• Stamu-O’Brien C, Jafferany M, Carniciu S, Abdelmaksoud A. Psychodermatology of pimples: psychological points and results of pimples vulgaris. J Cosmet Dermatol. 2021;20(4):1080–3.

    Article 
    PubMed 

    Google Scholar
     

  • Melnik BC, Schmitz G. Function of insulin, insulin-like development factor-1, hyperglycaemic meals and milk consumption within the pathogenesis of pimples vulgaris. Exp Dermatol. 2009;18(10):833–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Chang YJ, Yu IC, Yeh S, Wu CC, Miyamoto H, et al. ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype through degradation of androgen receptor. Nature Med. 2007;13(3):348–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Xiang LH, Yu B, Yin R, Chen L, Wu Y, et al. Low-dose topical 5-aminolevulinic acid photodynamic remedy within the therapy of various severity of pimples vulgaris. Photodiagnosis Photodyn Ther. 2013;10(4):583–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baldwin H, Webster G, Stein Gold L, Callender V, Cook dinner-Bolden FE, Guenin E. 50 Years of topical retinoids for pimples: evolution of therapy. Am J Clin Dermatol. 2021;22(3):315–27.

    Article 
    PubMed 

    Google Scholar
     

  • Stuart B, Maund E, Wilcox C, Sridharan Okay, Sivaramakrishnan G, Regas C, et al. Topical preparations for the therapy of mild-to-moderate pimples vulgaris: systematic evaluate and community meta-analysis. Br J Dermatol. 2021;185(3):512–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoham AL, Casadesus D. Tretinoin. Treasure Island (FL): StatPearls; 2021.


    Google Scholar
     

  • Furukawa F, Makino T, Mori S, Shimizu T. Profitable therapy of pimples fulminans with the mix of prednisolone and diaminodiphenylsulfone. J Dermatol. 2021;48(2):e120–1.

    Article 
    PubMed 

    Google Scholar
     

  • George R, Clarke S, Thiboutot D. Hormonal remedy for pimples. Semin Cutan Med Surg. 2008;27(3):188–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thiboutot D, Gollnick H, Bettoli V, Dreno B, Kang S, Leyden JJ, et al. New insights into the administration of pimples: an replace from the worldwide alliance to enhance outcomes in pimples group. J Am Acad Dermatol. 2009;60(5):50.

    Article 

    Google Scholar
     

  • Zaenglein AL. Pimples vulgaris. N Engl J Med. 2018;379(14):1343–52.

    Article 
    PubMed 

    Google Scholar
     

  • Katoh M. FGFR2 abnormalities underlie a spectrum of bone, pores and skin, and most cancers pathologies. J Make investments Dermatol. 2009;129(8):1861–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo Y, Ye S, Kan M, McKeehan WL. Management of fibroblast development issue (FGF) 7-and FGF1-induced mitogenesis and downstream signalling by distinct heparin octasaccharide motifs. J Biol Chem. 2006;281(30):21052–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munro CS, Wilkie AO. Epidermal mosaicism producing localised pimples: somatic mutation in FGFR2. Lancet. 1998;352(9129):704–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rees J. FGFR2 mutations and pimples. Lancet. 1998;352(9129):668–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson J, Burns HD, Enriquez-Harris P, Wilkie AO, Heath JK. Apert syndrome mutations in fibroblast development issue receptor 2 exhibit elevated affinity for FGF ligand. Hum Mol Genet. 1998;7(9):1475–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA, et al. Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and a rise in epithelial androgen receptor. Most cancers Cell. 2007;12(6):572–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosini P, Bonaccorsi L, Baldi E, Chiasserini C, Forti G, De Chiara G, et al. Androgen receptor expression induces FGF2, FGF-binding protein manufacturing, and FGF2 launch in prostate carcinoma cells: function of FGF2 in development, survival, and androgen receptor down-modulation. Prostate. 2002;53(4):310–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Stamp GW, Powell S, Abel P, Laniado M, Mahony C, et al. Correlation between androgen receptor expression and FGF8 mRNA ranges in sufferers with prostate most cancers and benign prostatic hypertrophy. J Clin Pathol. 1999;52(1):29–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gnanapragasam VJ, Robson CN, Neal DE, Leung HY. Regulation of FGF8 expression by the androgen receptor in human prostate most cancers. Oncogene. 2002;21(33):5069–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danilenko DM, Ring BD, Yanagihara D, Benson W, Wiemann B, Starnes CO, et al. Keratinocyte development issue is a crucial endogenous mediator of hair follicle development, growth, and differentiation normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am J Pathol. 1995;147(1):145–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melnik BC. Function of FGFR2-signalling within the pathogenesis of pimples. Dermato Endocrinol. 2009;1(3):141–56.

    Article 
    CAS 

    Google Scholar
     

  • Melnik B, Schmitz G. FGFR2 signalling and the pathogenesis of pimples. J Dtsch Dermatol Ges. 2008;6(9):721–8.

    Article 
    PubMed 

    Google Scholar
     

  • Kumtornrut C, Yamauchi T, Koike S, Aiba S, Yamasaki Okay. Androgens modulate keratinocyte differentiation not directly by way of enhancing development issue manufacturing from dermal fibroblasts. J Dermatol Sci. 2019;93(3):150–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melnik BC, Schmitz G, Zouboulis CC. Anti-acne brokers attenuate FGFR2 sign transduction in pimples. J Make investments Dermatol. 2009;129(8):1868–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu T, Jiang X, Zhang X, Wu B, Xu B, Liu X, et al. Intrahepatic cholangiocarcinoma: cutting-edge of FGFR Inhibitors. Most cancers Management. 2021;28:1073274821989314.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saborowski A, Lehmann U, Vogel A. FGFR inhibitors in cholangiocarcinoma: what’s now and what’s subsequent? Ther Adv Med Oncol. 2020;12:1758835920953293.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manetti F, Botta M. Small-molecule inhibitors of fibroblast development issue receptor (FGFR) tyrosine kinases (TK). Curr Pharm Des. 2003;9(7):567–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamont FR, Tomlinson DC, Cooper PA, Shnyder SD, Chester JD, Knowles MA. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma development in vitro and in vivo. Br J Most cancers. 2011;104(1):75–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison C. Weight problems and diabetes: an FGFR antibody with long-lasting results. Nat Rev Drug Discov. 2012;11(2):106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du E, Xiao L, Hurley MM. FGF23 neutralizing antibody ameliorates hypophosphatemia and impaired FGF receptor signalling in kidneys of HMWFGF2 transgenic mice. J Cell Physiol. 2017;232(3):610–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maruyama-Takahashi Okay, Shimada N, Imada T, Maekawa-Tokuda Y, Ishii T, Ouchi J, et al. A neutralizing anti-fibroblast development issue (FGF) 8 monoclonal antibody reveals anti-tumor exercise in opposition to FGF8b-expressing LNCaP xenografts in androgen-dependent and-independent situations. Prostate. 2008;68(6):640–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kommalapati A, Tella SH, Borad M, Javle M, Mahipal A. FGFR inhibitors in oncology: perception on the administration of toxicities in scientific apply. Cancers. 2021;13(12):2968.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weaver A, Bossaer JB. Fibroblast development issue receptor (FGFR) inhibitors: a evaluate of a novel therapeutic class. J Oncol Pharm Pract. 2021;27(3):702–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Q, Wang J, Zhao L, Hou J, Hu Y, Shi J. Latest advances of twin FGFR inhibitors as a novel remedy for most cancers. Eur J Med Chem. 2021;214:113205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabnis RW. Novel bicyclic heterocycles as FGFR inhibitors for treating most cancers. ACS Med Chem Lett. 2021;12(3):320–1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiaojia Chen XL, Tian Baoqing, Tan Xuan, Han Wei, Nie Chuangjun, Wang JiaKang, Jin Yuan, Li YaDan, Hong An. FGFR2 and miR-671–5p as key members concerned within the development of human esophageal squamous cell carcinoma. Chicago USA: AACR; 2018.


    Google Scholar
     

  • Chen XJ, Solar FY, Xie QL, Liao MD, Zhang L, Li ZY, et al. Cloning and excessive stage nonfusion expression of recombinant human primary fibroblast development think about escherichia coli. Acta Pharmacol Sin. 2002;23(9):782–6.

    PubMed 

    Google Scholar
     

  • Hosaka Okay, Yang Y, Seki T, Du Q, Jing X, He X, et al. Therapeutic paradigm of twin focusing on VEGF and PDGF for successfully treating FGF-2 off-target tumors. Nat Commun. 2020;11(1):3704.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Li Y, Cao J, Meng Q, Li X, Zhang Y, et al. Growth and characterization of a novel peptide-drug conjugate with DM1 for therapy of FGFR2-positive tumors. Biomedicines. 2021;9(8):849.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Nie C, Tian B, Tan X, Han W, Wang J, et al. miR-671–5p blocks the development of human esophageal squamous cell carcinoma by suppressing FGFR2. Int J Biol Sci. 2019;15(9):1892–904.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Yibo, Ouyang Man, Wang Hailong, Zhang Bihui, Guang Wenhua, Liu Ruiwu, Li Xiaocen, Shih Tsung-Chieh, Li Zhixin, Cao Jieqiong, Meng Qiling, Zijian Su, Ye Jinshao, Liu Feng, Hong An, Chen Xiaojia. A cyclic peptide retards the proliferation of DU145 prostate most cancers cells in vitro and in vivo by way of inhibition of FGFR2. Med Comm. 2020;1(3):362–75.


    Google Scholar
     

  • Hsiao PF, Peng S, Tang TC, Lin SY, Tsai HC. Enhancing the in vivo transdermal supply of gold nanoparticles utilizing poly(ethylene glycol) and its oleylamine conjugate. Int J Nanomed. 2016;11:1867–78.

    CAS 

    Google Scholar
     

  • Qin P, Tang J, Solar D, Yang Y, Liu N, Li Y, et al. Zn(2+) cross-linked alginate carrying hole silica nanoparticles loaded with RL-QN15 peptides supplies promising therapy for continual pores and skin wounds. ACS Appl Mater Interfaces. 2022;14(26):29491–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braun Okay, Pochert A, Linden M, Davoudi M, Schmidtchen A, Nordstrom R, et al. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci. 2016;475:161–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi JS, Zhu Y, Li H, Peyda P, Nguyen TT, Shen MY, et al. Cross-linked fluorescent supramolecular nanoparticles as finite tattoo pigments with controllable intradermal retention instances. ACS Nano. 2017;11(1):153–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman AS. Hydrogels for biomedical purposes. Adv Drug Ship Rev. 2012;64:18–23.

    Article 

    Google Scholar
     

  • Dowaidar M, Abdelhamid HN, Hallbrink M, Zou X, Langel U. Graphene oxide nanosheets in advanced with cell penetrating peptides for oligonucleotides supply. Biochim Biophys Acta Gen Subj. 2017;1861(9):2334–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dowaidar M, Abdelhamid HN, Hallbrink M, Freimann Okay, Kurrikoff Okay, Zou X, et al. Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene supply. Sci Rep. 2017;7(1):9159.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelhamid HN, Dowaidar M, Hallbrink M, Langel U. Gene supply utilizing cell penetrating peptides-zeolitic imidazolate frameworks. Micropor Mesopor Mat. 2020;300:110173.

    Article 
    CAS 

    Google Scholar
     

  • Graca MFP, Miguel SP, Cabral CSD, Correia IJ. Hyaluronic acid-based wound dressings: a evaluate. Carbohydr Polym. 2020;241:116364.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tolentino S, Pereira MN, Cunha-Filho M, Gratieri T, Gelfuso GM. Focused clindamycin supply to pilosebaceous models by chitosan or hyaluronic acid nanoparticles for improved topical therapy of pimples vulgaris. Carbohydr Polym. 2021;253:117295.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auffret N, Claudel JP, Leccia MT, Ballanger F, Dreno B. Novel and rising therapy choices for pimples vulgaris. Eur J Dermatol EJD. 2022;32(4):451–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon SS, Kong BJ, Park SN. Physicochemical properties of pH-sensitive hydrogels based mostly on hydroxyethyl cellulose-hyaluronic acid and for purposes as transdermal supply techniques for pores and skin lesions. Eur J Pharm Biopharm. 2015;92:146–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro KC, Campos MGN, Mei LHI. Hyaluronic acid electrospinning: challenges, purposes in wound dressings and new views. Int J Biol Macromol. 2021;173:251–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Im M, Kim SY, Sohn KC, Choi DK, Lee Y, Web optimization YJ, et al. Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes. J Investi Dermatol. 2012;132(12):2700–8.

    Article 
    CAS 

    Google Scholar
     

  • Mirshahpanah P, Maibach HI. Fashions in acnegenesis. Cutan Ocul Toxicol. 2007;26(3):195–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi Okay, Jin M, Zouboulis CC, Lee Y. Elevated lipid accumulation beneath hypoxia in SZ95 human sebocytes. Dermatology. 2020. https://doi.org/10.1159/000505537.

    Article 
    PubMed 

    Google Scholar
     

  • Clayton RW, Gobel Okay, Niessen CM, Paus R, van Steensel MAM, Lim X. Homeostasis of the sebaceous gland and mechanisms of pimples pathogenesis. Br J Dermatol. 2019;181(4):677–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovaszi M, Mattii M, Eyerich Okay, Gacsi A, Csanyi E, Kovacs D, et al. Sebum lipids affect macrophage polarization and activation. Br J Dermatol. 2017;177(6):1671–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marks DH, Prasad S, De Souza B, Burns LJ, Senna MM. Topical antiandrogen therapies for androgenetic alopecia and pimples vulgaris. Am J Clin Dermatol. 2020;21(2):245–54.

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong CM, Gao AC. Adaptive pathways and rising methods overcoming therapy resistance in castration resistant prostate most cancers. Asian J Urol. 2016;3(4):185–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zouboulis CC. Pimples and sebaceous gland operate. Clin Dermatol. 2004;22(5):360–6.

    Article 
    PubMed 

    Google Scholar
     

  • Eichenfield DZ, Sprague J, Eichenfield LF. Administration of pimples vulgaris: a evaluate. JAMA. 2021;326(20):2055–67.

    Article 
    PubMed 

    Google Scholar
     

  • Habeshian KA, Cohen BA. Present points within the therapy of pimples vulgaris. Pediatrics. 2020;145(2):S225–30.

    Article 
    PubMed 

    Google Scholar
     

  • Yang D, Pornpattananangkul D, Nakatsuji T, Chan M, Carson D, Huang CM, et al. The antimicrobial exercise of liposomal lauric acids in opposition to propionibacterium acnes. Biomaterials. 2009;30(30):6035–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lapteva M, Moller M, Gurny R, Kalia YN. Self-assembled polymeric nanocarriers for the focused supply of retinoic acid to the hair follicle. Nanoscale. 2015;7(44):18651–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Liu L, Xiang S, Jiang C, Wu W, Ruan S, et al. Formulation and characterization of a 3D-printed cryptotanshinone-loaded niosomal hydrogel for topical remedy of pimples. AAPS PharmSciTech. 2020;21(5):159.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chutoprapat R, Kopongpanich P, Chan LW. A mini-review on stable lipid nanoparticles and nanostructured lipid carriers: topical supply of phytochemicals for the therapy of pimples vulgaris. Molecules. 2022;27(11):3460.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt JB, Spona J, Huber J. Androgen receptor in hirsutism and pimples. Gynecol Obstet Make investments. 1986;22(4):206–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inui S, Nakao T, Itami S. Modulation of androgen receptor transcriptional exercise by anti-acne reagents. J Dermatol Sci. 2004;36(2):97–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao X, Yang Y, Solar B-F, Shi Y, Yang X, Xiao W, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24(12):1403–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation effectivity. Cell. 2015;161(6):1388–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27(3):444–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Amitai D, Laron Z. Impact of insulin-like development factor-1 deficiency or administration on the prevalence of pimples. J Eur Acad Dermatol Venereol JEADV. 2011;25(8):950–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agamia NF, Hussein OM, Abdelmaksoud RE, Abdalla DM, Talaat IM, Zaki EI, et al. Impact of oral isotretinoin on the nucleo-cytoplasmic distribution of FoxO1 and FoxO3 proteins in sebaceous glands of sufferers with pimples vulgaris. Exp Dermatol. 2018;27(12):1344–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Q, Fu W, Li P, Nicosia SV, Jenster G, Zhang X, et al. FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment. Mol Endocrinol. 2009;23(2):213–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oules B, Philippeos C, Segal J, Tihy M, Vietri Rudan M, Cujba AM, et al. Contribution of GATA6 to homeostasis of the human higher pilosebaceous unit and pimples pathogenesis. Nat Commun. 2020;11(1):5067.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chibaya L, Karim B, Zhang H, Jones SN. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to advertise cell proliferation and tumorigenesis. Proc Natl Acad Sci USA. 2021;118(4):e2003193118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melnik BC. p53: key conductor of all anti-acne therapies. J Transl Med. 2017;15(1):195.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cottle DL, Kretzschmar Okay, Schweiger PJ, Quist SR, Gollnick HP, Natsuga Okay, et al. c-MYC-induced sebaceous gland differentiation is managed by an androgen receptor/p53 axis. Cell Rep. 2013;3(2):427–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alimirah F, Panchanathan R, Chen J, Zhang X, Ho SM, Choubey D. Expression of androgen receptor is negatively regulated by p53. Neoplasia. 2007;9(12):1152–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai C, Balk SP. Intratumoral androgen biosynthesis in prostate most cancers pathogenesis and response to remedy. Endocrine-Relat Most cancers. 2011;18(5):R175-82.

    Article 
    CAS 

    Google Scholar
     

  • Crocco EI, Bonifacio EB, Facchini G, da Silva GH, da Silva MS, Pinheiro A, et al. Modulation of pores and skin androgenesis and sebum manufacturing by a dermocosmetic formulation. J Cosmet Dermatol. 2021;20(1):360–5.

    Article 
    PubMed 

    Google Scholar
     

  • Bansal P, Sardana Okay, Vats G, Sharma L, Garga UC, Khurana A. A Potential research analyzing set off components and hormonal abnormalities in grownup feminine pimples. Indian Dermatol On-line J. 2020;11(4):544–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *